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Abstract 

Background:  The CRISPR-Cas12a (formerly Cpf1) system is a versatile gene-editing tool with properties distinct 
from the broadly used Cas9 system. Features such as recognition of T-rich protospacer-adjacent motif (PAM) and 
generation of sticky breaks, as well as amenability for multiplex editing in a single crRNA and lower off-target nucle-
ase activity, broaden the targeting scope of available tools and enable more accurate genome editing. However, the 
widespread use of the nuclease for gene editing, especially in clinical applications, is hindered by insufficient activity 
and specificity despite previous efforts to improve the system. Currently reported Cas12a variants achieve high activ-
ity with a compromise of specificity. Here, we used structure-guided protein engineering to improve both editing 
efficiency and targeting accuracy of Acidaminococcus sp. Cas12a (AsCas12a) and Lachnospiraceae bacterium Cas12a 
(LbCas12a).

Results:  We created new AsCas12a variant termed “AsCas12a-Plus” with increased activity (1.5~2.0-fold improve-
ment) and specificity (reducing off-targets from 29 to 23 and specificity index increased from 92% to 94% with 33 
sgRNAs), and this property was retained in multiplex editing and transcriptional activation. When used to disrupt the 
oncogenic BRAFV600E mutant, AsCas12a-Plus showed less off-target activity while maintaining comparable editing 
efficiency and BRAFV600E cancer cell killing. By introducing the corresponding substitutions into LbCas12a, we also 
generated LbCas12a-Plus (activity improved ~1.1-fold and off-targets decreased from 20 to 12 while specificity index 
increased from 78% to 89% with 15 sgRNAs), suggesting this strategy may be generally applicable across Cas12a 
orthologs. We compared Cas12a-Plus, other variants described in this study, and the reported enCas12a-HF, enCas12a, 
and Cas12a-ultra, and found that Cas12a-Plus outperformed other variants with a good balance for enhanced activity 
and improved specificity.

Conclusions:  Our discoveries provide alternative AsCas12a and LbCas12a variants with high specificity and activity, 
which expand the gene-editing toolbox and can be more suitable for clinical applications.
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Background
The clustered regularly interspaced short palindromic 
repeats (CRISPR)-CRISPR associated protein (Cas) 
system, an adaptive immunity system in bacteria and 
archaea, is a promising genome editing tool that has been 
widely used in a broad range of areas [1]. However, off-
target cleavage of Cas-nucleases is routinely observed 
and remains an obstacle for clinical applications [2–4]. 
Therefore, the improvement of their targeting accuracy 
is essential for CRISPR-Cas tools in genome editing 
research, particularly in therapeutic applications [1]. So 
far, several strategies have been developed to improve 
this technique, and they can generally be divided into two 
categories: the sgRNA modification [5–16] and the Cas-
nuclease protein engineering [17–27]. In particular, pro-
tein engineering is an efficient and widely used approach 
for the development of high-fidelity Cas-nuclease vari-
ants, which has been well-proved in SpCas9, such as the 
unbiased engineered variants HiFi-Cas9 [17], evoCas9 
[18], xCas9 [19], Sniper-Cas9 [20], LZ3-Cas9 [21], etc., 
and the structure-guided engineered mutants SpCas9-HF 
[22], eSpCas9 [23], HeFSpCas9 [24], HypaCas9 [25], etc. 
These novel high-specific Cas-nuclease variants broaden 
the repertoire of CRISPR-Cas9 tools in gene, epigenome, 
and base editing applications [28].

As- (Acidaminococcus sp.) and Lb- (Lachnospiraceae 
bacterium) Cas12a are the two commonly used Cas-
nuclease in the CRISPR-Cas12a system, which is also a 
promising genome editing tool in addition to the exten-
sively investigated CRISPR-Cas9 [29, 30]. Several unique 
features make Cas12a distinguished from Cas9. First, 
Cas12a recognizes T-rich PAMs and generates sticky 
break ends [29], which makes it a complement to Cas9 
in genome editing and broadens the genomic targeting 
scope. Second, Cas12a is a single crRNA-guided endo-
nuclease and has the ribonuclease activity to process its 
pre-crRNA into mature crRNA [29, 31], which enables 
multiplex editing in a single crRNA transcript [32, 33]. 
Third, rather than using both RuvC and HNH domains 
in Cas9 [34], Cas12a cuts target DNA with a single RuvC 
domain. Fourth, Cas12a possesses the ability to trans-
cleave single-stranded DNA (ssDNA) [35], making it a 
powerful platform for nucleic acid detection [35, 36]. 
Finally, Cas12a displays less off-target nuclease activity 
than does Cas9 [37, 38], enabling more precise genome 
editing for therapeutic applications [39].

Although Cas12a nuclease has shown powerful potentials 
in gene editing [40], insufficient efficiency and specificity 
remain a major obstacle for its broad application [37, 38]. 

Similar to SpCas9, approaches including Cas-protein engi-
neering and sgRNA-modification had been employed in 
CRISPR-AsCas12a/LbCas12a system to improve their cut-
ting efficiency or targeting accuracy [6–16, 26, 27, 41–53]. 
However, none of them achieved both improved specificity 
and enhanced activity (Additional file  1: Table  S1) [6–16, 
26, 27, 41–53], calling for the development of new variants 
to improve this system. Moreover, other Cas12a orthologs 
also have been explored and engineered for the same pur-
pose (Additional file 1: Table S2) [42, 54–63], reflecting the 
urgent needs in this field. Here, we developed high-active 
and high-specific Cas12a nuclease variants by structure-
guided protein engineering, which can expand the CRISPR-
Cas toolbox and provide new genome editing tools for the 
applications in fundamental research and translational 
medicine.

Results
Structure‑guided protein engineering for high‑fidelity 
AsCas12a variants
To generate the high-fidelity AsCas12a mutant, we 
employed the energy hypothesis [22, 23], because 
numerous high specific Cas-nuclease variants had 
been successfully developed based on this hypothesis, 
including Cas9-HF [22] and eSpCas9 [23]. According 
to the crystal structure of the AsCas12a-crRNA-tar-
get DNA complex [64], we identified three positively 
charged amino acid residues (K780, R951, and R955) 
forming hydrogen bond contact with the backbone of 
the target DNA strand (Fig.  1a). R951 and R955 are 
located in the Bridge helix and K780 is in the WED 
domain [64], all of which are likely to be involved in 
stabilizing the interaction between AsCas12a and 
the targeted strand and thus leading to cleave mis-
matched off-target sites [22, 23, 64]. We then mutated 
these three amino acids and combined them for con-
structing five different AsCas12a variants bearing 
single, double, or triple substitutions (Fig.  1b), and 
tested whether these mutants possessed a relatively 
higher specificity. Western blotting showed that these 
mutants were expressed equivalently to the wild-type 
(WT) AsCas12a (Additional file  2: Figure S1a). Then, 
we performed the editing assay by using mismatched 
sgRNAs targeting DNMT1-site3, since this site had 
been well-studied in wild-type AsCas12a with differ-
ent mismatched crRNAs [38]. Using deep-sequencing, 
T7 endonuclease I (T7E1), and polyacrylamide gel 
electrophoresis (PAGE)-based methods, we found that 
the AsCas12a-KK and AsCas12a-KA mutants retained 
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comparable on-target activities but fewer cleavages 
with mismatched sgRNAs (Additional file  2: Figure 
S1b-d), indicating they may have a higher specificity. 
Based on this, we chose AsCas12a-KK and AsCas12a-
KA variants for further study.

Genome‑wide specificity of AsCas12a‑KK and AsCas12a‑KA
To globally evaluate the editing specificity of AsCas12a-
KK and AsCas12a-KA, we performed Tag-seq experi-
ments [65] to assess seventeen different sgRNAs 
targeting different sites in the endogenous human EMX1, 
DNMT1, RUNX1, PD1, CTLA4, CD47, SIRPa, CCR5, and 
CXCR4 genes (Fig. 1c and Additional file 2: Figure S1e), 
as these sites had been well-studied or were of clinical 
relevance. As a result, Tag-seq showed that the off-target 

cleavage was significantly decreased for AsCas12a-KK 
and AsCas12a-KA variants at most of the tested sites, 
with reducing the total off-target sites from 31 with 
AsCas12a-WT to 13 with AsCas12a-KK and to 8 with 
AsCas12a-KA (Fig.  1d). As expected, the specificity of 
the two mutants was increased, with the specificity index 
of 0.85, 0.82, and 0.71 for KA, KK, and WT, respectively 
(Fig.  1e). However, AsCas12a-KA was less active with 
only an average of 82% editing efficiency compared to the 
WT AsCas12a (Fig. 1f ).

Improvement of the AsCas12a mutants for genome editing
Inspired by the enhanced AsCas12a (enAsCas12a), a 
highly active AsCas12a mutant previously reported 
[27], we next constructed AsCas12a-RKA mutant by 
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Fig. 1  Generation of AsCas12a variants with increased specificity by weakening non-specific DNA contacts. a Schematic of wild-type AsCas12a 
interaction with the target DNA-sgRNA duplex. b The mutation sites of the AsCas12a variants. c Tag-seq-based comparative analyses of wild-type 
AsCas12a (WT), AsCas12a variant KA (KA), and AsCas12a variant KK (KK) with seventeen sgRNAs targeting nine genes (also see Additional file 2: 
Figure S1e). The sgRNA was shown on the top and the on-target and the off-target cleavages were displayed without or with mismatches to the 
sgRNA reference by color highlighting. Sequencing read counts were shown to the right of each site. d Total number of off-target sites detected 
with the seventeen sgRNAs. e Specificity Index (value was calculated by the ratio of total on-target reads to the on-target reads plus the off-target 
reads within the seventeen sites). f Normalization of on-target activity of KK and KA to wild-type AsCas12a
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introducing the E174R substitution (Fig.  2a), because 
this site was proximal to PAM DNA [64] and the charged 
arginine residue mutation could alter or form novel 
PAM proximal DNA contacts, which had been proved 
to increase the editing activity of the AsCas12a nucle-
ase [27]. Western blotting showed that this substitution 
did not affect protein expression (Additional file  2: Fig-
ure S2a). Then, we performed specificity comparative 
analyses among AsCas12a-WT, AsCas12a-RKA, and 

AsCas12a-HF (enAsCas12a-HF, the high-fidelity ver-
sion of enAsCas12a) by targeting RUNX1 and Site 6, 
two well-studied sites for specificity assessment of the 
CRISPR-Cas12a system [38]. Tag-seq indicated that the 
AsCas12a-RKA increased the editing efficiency with 
~3-fold promotion (on-target reads was 2922 in RKA 
while WT is 1059) at site RUNX1 and at least equivalent 
editing level at Site 6 (2054 reads in RKA versus 1951 in 
WT) (Additional file 2: Figure S2b, c). More importantly, 
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Fig. 2  Generation of AsCas12a variants with increased efficiency by introducing the high-activity substitution. a The mutation sites of the high 
active AsCas12a variants. b Tag-seq-based comparative analyses of wild-type AsCas12a (WT), AsCas12a variant RKA (RKA), AsCas12a variant RKK 
(RKK), and AsCas12a-HF (HF, the reported high-fidelity variant of enAsCas12a) with twenty-two sgRNAs targeting twelve genes (also see Additional 
file 2: Figure S3). c Normalization of on-target activity of RKA, RKK, and HF to wild-type AsCas12a. d Total number of off-target sites detected with 
the twenty-two sgRNAs. e Specificity index (value was calculated by the ratio of total on-target reads to the on-target reads plus the off-target reads 
within the twenty-two sites). f Detection of the editing abilities for the non-canonical PAM with AsCas12a-RKA. Mean values are presented with SEM, 
n=4 independent experiments. Indel was revealed by Deep-seq
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unlike the HF mutant, the activity improvement of the 
RKA mutant did not compromise but slightly improved 
the specificity (Additional file 2: Figure S2b-e).

Next, to determine whether this strategy could 
be applied to another variant, KK, we constructed 
AsCas12a-RKK as well and examined the protein expres-
sion level (Fig. 2a and Additional file 2: Figure S2a). Then, 
we utilized Tag-seq with twenty-two sgRNAs targeting 
twelve genes to comprehensively assess the editing abili-
ties among AsCas12a-WT, AsCas12a-RKA, AsCas12a-
RKK, and AsCas12a-HF (Fig.  2b and Additional file  2: 
Figure S3). Expectedly, with the introduction of the 
E174R, the average efficiency of RKA was increased 
about 1.64-fold compared to the WT AsCas12a (Fig. 2c). 
Moreover, among the four tested enzymes, RKA exhib-
ited the highest specificity with the least off-target sites 
(Fig.  2d, e). Notably, the improvement of activity was 
also observed in mutant RKK (Fig.  2c); however, its 
specificity was slightly affected (Fig.  2d, e). Consistent 
with the previous report [27], enAsCas12a-HF displayed 
a robust efficiency which was ~2.23-fold improvement 
compared to WT AsCas12a (Fig. 2c); however, it induced 
32 additional off-target cleavages in twenty-two tested 
sgRNAs and exhibited the lowest specificity (Fig. 2d, e). 
These data demonstrated that with the combination of 
E174R substitution, AsCas12a-RKA exhibited improved 
activity and slightly increased specificity, indicating it 
was a high-active and high-specific Cas12a nuclease. 
As the high-active site E174R displayed extended tar-
geting range for non-canonical PAMs (such as ATTA, 
CTTA, GTTA, and TCTA) [27], we next tested whether 
AsCas12a-RKA possessed this ability. As shown in 
Fig.  2f, AsCas12a-RKA induced indels to an extent 
between enAsCas12a and WT AsCas12a, indicating a 
slightly expanded PAM recognition.

Apart from protein engineering, sgRNA modification 
is also an efficient way of enhancing the efficiency of the 
CRISPR-Cas12a system [66]. It had been reported that 
adding a “U4AU6” motif at the end of the crRNA [6] or 
using a pol-II-driven truncated pre-tRNA [7] to express 
the crRNA could improve the activity of the CRISPR-
Cas12a system (Additional file  2: Figure S4a). Thus, we 
designed such sgRNAs to target exogenous EGFP gene 
and endogenous genes, FANCF and Site 6. FACS and 
Deep-seq results showed that the U4AU6-crRNA com-
bined with some Cas12a variants tended to increase 
the editing efficiency at EGFP-g1 and site 6 loci, while 
the truncated pre-tRNA displayed comparable or less 
efficiency at all the four tested sites (Additional file  2: 
Figure S4b, c), suggesting that these two methods may 
work in a site-dependent manner, similar to a previous 
report of improving SpCas9 specificity by truncated-
sgRNA [2, 5].

Multiplex editing of the AsCas12a variants using a single 
crRNA array
Next, we tested whether the new AsCas12a variants 
could improve Cas12a-based approaches. An advantage 
of the Cas12a enzyme over Cas9 is the multiplex edit-
ing, in which Cas12a processes individual crRNAs from 
a single crRNA array to simplify multiplex targeting in 
cells [32, 33, 47]. To assess this property in the engi-
neered Cas12a variants, we cloned a poly-crRNA tran-
script including six crRNAs targeting DNMT1, EMX1, 
CTLA4, CCR5, SIPRa, and RUNX1 (Fig.  3a). Tag-seq 
experiments showed that all the mutants could medi-
ate gene editing in these six sites with different levels 
(Fig.  3b), demonstrating the amino acid substitutions 
did not affect the crRNA self-processing activity. Among 
all the tested variants, RKA displayed both improved 
efficiency and specificity, while the enAsCas12a-HF 
showed the highest activity but with the worst specificity 
(Fig. 3b–e). These results demonstrated that AsCas12a-
RKA was able to do multiplex editing with high activity 
and slightly improved specificity.

Transcriptional activation with the AsCas12a variants
Cas12a has also been used for transcriptional activation 
of endogenous genes by fusing DNase-inactive Cas12a 
(dCas12a) to a gene activator [67, 68]. We then examined 
this application with the engineered AsCas12a variants. 
We found that using dAsCas12a fused to the synthetic 
VPR (VP64-p65-Rta) activation domain (dAsCas12a-
VPR) (Fig. 4a), the dRKA-, dRKK-, and dHF-VPR systems 
can activate the transcriptional expression of IL1RN, 
MOYD, and HBG in human cells and Fgf21 in mouse cells 
with comparable level to dWT-VPR (Fig.  4b). However, 
dKK-VPR and dKA-VPR showed much lower capability 
to activate HBG and even failed to activate Fgf21 (Fig. 4b), 
which might reflect that the binding ability at these two 
sites was remarkably attenuated [64, 69]. Next, we per-
formed RNA-seq for specificity comparison among 
dWT-, dRKA-, and dHF-VPR to activate IL1RN. As a 
result, the dRKA-VPR system displayed a slight improve-
ment in activation of the endogenous gene IL1RN com-
pared with the WT and HF (Fig. 4c), demonstrating the 
ability of the RKA in transcriptional activation.

Simultaneous orthogonal gene activation and genome 
editing for multiplex genes with catalytical active SpCas9 
or AsCas12a fused to a gene activator has been reported 
[32, 70, 71]. Therefore, we compared orthogonally acti-
vation and editing ability among catalytically active 
AsCas12a-WT, AsCas12a-RKA, and AsCas12a-HF fused 
to VPR (termed WT-VPR, RKA-VPR, and HF-VPR sys-
tem) by using short 15-bp sgRNA for gene activation and 
long 23-bp sgRNA for gene editing (Fig. 4d). To this end, 
we designed two experiments, one for MYOD activation 
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and IL1RN editing, the other for IL1RN activation and 
MYOD editing. Deep-seq assays showed that all the 
three AsCas12a nucleases cleaved genomic DNA at the 
MYOD promoter region with comparable levels when 
using a 23-bp sgRNA, and failed to induce indels when 
using a 15-bp sgRNA. For activation, we observed that 
MYOD expression can be activated to a similar extent 
with the WT-, RKA-, and HF-VPR systems when trans-
fected with 15-bp sgRNAs (Fig.  4e). And similar results 
were observed at the IL1RN site (Fig.  4e). However, we 
also noticed that 23-bp guides could activate transcrip-
tion, although to a less extent than 15-bp guides (Fig. 4e), 
which was consistent with a previous report [71]. Cas12a 
usually cleaves DNA at around 18–23 bps distant from 
its PAM [29, 72], and DNA repair after cleavage could 
form a new imperfect matched sgRNA targeting site with 
mismatches at the sgRNA distal end. Since 15-bp sgRNA 
is able to activate gene expression, distal-mismatched 
23-bp sgRNA might guide Cas12a to the repaired site 
using the proximal matched sequence and activate gene 
expression. Together, these data indicated that the RKA-
VPR system could mediate gene activation and editing 
with different lengthed sgRNAs.

AsCas12a‑RKA holds editing safety in disruption oncogenic 
BRAFV600E

BRAF-V600E (1799T>A) is one of the most frequently 
reported driver mutations in multiple types of can-
cers, and patients with such mutations could benefit 
from disrupting this mutant allele [39, 73]. However, a 
major concern for implementing CRISPR/Cas9 for gene 
therapy is the relatively high frequency of off-target 
effects. Therefore, we sought to examine the therapeu-
tic potential of the high-fidelity Cas12a-RKA for editing 
this mutation. Melanoma cell line A375 is a homozy-
gous genotype with BRAF-V600E [74] (Additional file 2: 
Figure S5a). By using a mut-sgRNA, Tag-PCR assay 
[65] roughly displayed that the AsCas12a nucleases 
(WT, RKA, and HF) retained high editing selectivity 
at this site, as they did not cut wild-type but mutated 
sequence, whereas Cas9 recognized and cut both wild-
type and mutated alleles (Additional file  2: Figure S5b, 
c). Next, to more accurately assess the editing selectiv-
ity of the Cas-nucleases (SpCas9-WT, AsCas12a-WT, 
and all the AsCas12a mutants in this study), Tag-seq 
experiments were performed by using the Cas9- and 
Cas12a-sgRNA (both contained WT- and mut-sgRNAs) 
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multiplex editing
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in both BRAF+/+ HEK293T and BRAFV600E/V600E A375 
cells (Fig.  5a). Consistent with the Tag-PCR results, 
SpCas9 edited both wild-type and mutant BRAF with 
the mut-sgRNA and induced abundant off-targets edit-
ing (Fig.  5a), indicating a low selectivity for this muta-
tion editing. In contrast, wild-type AsCas12a and the 
engineered variants displayed higher specificity with 

only few cleavages in wild-type BRAF and no off-tar-
gets detection in mutant BRAF when applied with the 
mut-sgRNA (Fig.  5a). However, among all the tested 
AsCas12a nucleases, variant RKA showed high-specific-
ity and high-activity at this site (Fig. 5a). Further, by dis-
ruption BRAFV600E, AsCas12a-RKA induced A375 cell 
apoptosis with comparable level to AsCas12a-WT and 
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AsCas12a-HF (Fig.  5b), demonstrating the therapeutic 
potential of AsCas12a-RKA to treat BRAFV600E tumors.

Engineering of high‑performance LbCas12a variants 
via analogous substitutions to AsCas12a‑RKA
Encouraged by AsCas12a-RKA, we next examined 
whether these analogous positions in AsCas12a-RKA 
could be deployed in LbCas12a, another commonly used 
Cas12a nuclease, to generate LbCas12a mutants with 
high performance as well. Via amino acid sequence align-
ment between AsCas12a and LbCas12a, we identified 
the conserved amino acid residues and constructed four 
LbCas12a variants, KK, KA, RKA, and RKK (Fig. 6a, b). 
Western blotting showed similar protein expression lev-
els of these variants (Additional file 2: Figure S6). Then, 
we compared the activity and specificity of the four 
LbCas12a variants to WT LbCas12a by Tag-seq with fif-
teen sgRNAs targeting nine human endogenous genes 

(Fig. 6c). Consistently, the total off-targets of LbCas12a-
KK, LbCas12a-KA, LbCas12a-RKA, and LbCas12a-RKK 
reduced from 27 to 2, 2, 4, and 3, respectively (Fig. 6d). 
The specificity of these four mutants was increased 
as well (Fig.  6e). Notably, similar to AsCas12a-RKA, 
LbCas12a-RKA showed high efficiency and specificity 
(Fig. 6c–f).

Collectively, all the above results demonstrated that 
the engineered Cas12a-RKA variant behaved as a high-
active and high-specific nuclease; we hence termed it as 
“Cas12a-Plus”.

Systematical comparison of available high‑active AsCas12a 
variants
When our manuscript was underwriting, a new 
AsCas12a variant, AsCas12a-ultra, was reported with 
significantly enhanced activity [52]. To systematically 
compare the performance among these high-active 
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Cas12a variants, we constructed the AsCas12a-ultra, 
and the LbCas12a-ultra that was created by amino acid 
sequence conservation (Fig. 7a). Correspondingly, more 
variants were generated by combining with the high-
fidelity mutant sites KK and KA, or by introducing the 
high-active substitutions, or by combining the RKA and 
RKK mutations (Fig. 7b). After confirming the compara-
ble protein expression level by Western blotting (Addi-
tional file  2: Figures  S7a and S8a), we comprehensively 
analyzed their performance using Tag-seq with twenty-
eight sgRNAs targeting nineteen genes among AsCas12a 
variants (Additional file 2: Figure S7b), and with fifteen 
sgRNAs targeting nine genes among LbCas12a variants 
(Additional file  2: Figure S8b), respectively. As a result, 

although the mutant enAsCas12a and its high-fidel-
ity version enAsCas12-HF exhibited the highest edit-
ing abilities, they induced numbers of extra off-targets, 
particularly the enAsCas12a (Fig.  7c–e). Surprisingly, 
the AsCas12a-ultra showed a slightly improved activ-
ity and an obvious decreased specificity (Fig. 7c–e), and 
disruption of mNeonGreen expression in HEK293T-
KI reporter cell line leads to similar results (Additional 
file 2: Figure S9), which was different from the previous 
report [52]. We speculated that the possible reason was 
the difference in delivery approach. RNP delivery and 
plasmid transfection were employed by the previous 
report and the current study, respectively. And these two 
methods had been demonstrated to result in different 
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efficiency of gene editing [75, 76]. When introduced the 
high-active mutation E174R into the AsCas12a-ultra 
(termed RU), efficiency was increased while specific-
ity was significantly compromised (Fig.  7c–e). All the 
variants containing the KA and KK mutations exhibited 
improved specificity. Notably, among the ten tested vari-
ants of AsCas12a, AsCas12a-Plus displayed the best bal-
ance in editing performance with moderately enhanced 
activity and specificity (Fig.  7c–e). And similar results 
were observed in the LbCas12a versions (Fig.  7f–h, 
Additional file 2: Figures S8 and S10).

Discussion
The off-target effect of the CRISPR-Cas genome editing 
tools is a major concern for therapeutic applications. It 
has been reported that Cas12a exhibits a higher specific-
ity over the widely used SpCas9; however, the relatively 
low activity restricts their broad use [26, 27, 29, 30, 44]. 
Given the advantageous properties of the Cas12a nucle-
ase, such as the higher specificity and distinct PAM pref-
erence [29, 31], it represents a powerful alternative for 
gene editing. Here, we constructed novel Cas12a vari-
ants termed “Cas12a-Plus” by rational structure-guided 
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engineering to enable more potent and more specific 
gene editing.

Since Cas12a and Cas9 are complementary to each 
other as genome editing tools, like Cas9, Cas12a has 
also attracted plenty of effort for protein engineering 
to expand editing range, enhance activity, and improve 
specificity (for detailed information, please refer to 
Additional file  1: Table  S1 and Table  S2). For instance, 
AsCas12a-RVR and AsCas12a-RR have been engi-
neered to expand the PAM recognition range and their 
high-fidelity derivative mutants AsCas12a-RVRA and 
AsCas12a-RRA can improve editing specificity but 
with compromised activity [26, 27, 41]. More recently, 
enhanced AsCas12a (enAsCas12a/enAsCas12a-HF) [27], 
AsCas12a-ultra [52], and the impLbCas12a [45] have 
been reported to significantly enhance editing efficiency 
and broaden editing ranges. However, our data (Figs.  2, 
3, and 7) and the previous reports [27, 45, 52] demon-
strate that these variants induce extra off-targets cleav-
ages, indicating a compromise of specificity. In this study, 
we created alternative high-fidelity Cas12a-KA and KK, 
and high-active and high-specific Cas12a-Plus (Figs.  1, 
2, 3, and 7), which expanded the Cas12a toolbox. There-
fore, we recommend to use Cas12a variants with differ-
ent properties according to the intended applications. 
Our study provides Cas12a-Plus as the first variant with 
enhanced activity and increased specificity, which holds 
great potential for broad applications, especially for clini-
cal disease therapy.

With unique features, Cas12a outperforms Cas9 in some 
applications. For example, Cas12a has been reported to 
be better than Cas9 for one-step generation of modular 
CAR-T cells [77]. With the crRNA self-processing activity, 
Cas12a could be used for combinatorial genetic screening 
[50, 51]. In this study, we also found that, with higher spec-
ificity, Cas12a outperformed Cas9 to disrupt BRAFV600E 
mutated allele and thus triggered cancer cell death with 
much less genome editing in normal cells (Fig.  5). With 
enhanced specificity and activity, the AsCas12a-Plus vari-
ant further improved the performance (Fig.  5). Since it 
maintained the enhanced-activity and improved-speci-
ficity in multiplex editing and transcriptional activation 
(Figs. 3 and 4), we believe that AsCas12a-Plus could out-
perform wild-type AsCas12a in combinatorial genetic 
screening as well as other Cas12a-based applications.

According to the energy hypothesis [22, 23], the Wat-
son-Crick base pairing between gRNA and the target 
DNA strand as well as the binding between Cas protein 
and the PAM bases provided specific energy (A, T, C, and 
G base-dependent), while the binding between Cas pro-
tein and the backbone of target DNA strand and PAM 
DNA as well as the binding between Cas protein and 

non-target DNA strand provided non-specific energy 
(base-independent). Both specific and non-specific 
energy contributed to recognition and cleavage. Besides, 
it has been reported that Bridge helix arginines (Rs) play 
a critical role in sensitivity to mismatched sequences [69]. 
Based on these, we finally focused on R951 and R955 by 
analyzing the crystal structure of the AsCas12a-crRNA-
target DNA complex [64]. Because they were located at 
Bridge helix and seemed to provide non-specific con-
tacts [64]. Since R951A mutation reduces Cas12a activity 
[64], we thus used R951K as an alternative, since lysine 
(K) is highly similar to arginine (R) in structure and is of 
less possibility to form hydrogen bonds between Cas12a 
and the target DNA strand as predicted by the complex 
structure. We did demonstrate that R951K/R955A (KA) 
and R951K/R955K (KK) mutation could improve editing 
specificity (Fig. 1). By combining with a known activity-
enhancing E174R mutation [27], we created AsCas12a-
Plus with high-activity and high-fidelity, which was also 
applicable with LbCas12a (Figs. 2 and 6). Other variants 
combined with the RKA mutation, such as the AsCas12a-
ultra, could improve activity and specificity (the RU and 
RKAU variants, Fig. 7). In theory, this strategy could be 
introduced into other Cas12a variants, such as the PAM-
less-restricted RVR and RR mutations [26, 27, 41], or 
combined with the chemical modification [10, 15], to 
improve performance. Amino acid residues other than 
the tested E174/K780/R951/R955 could contribute to the 
activity and specificity of AsCas12a, such as the residues 
contacting the non-target DNA strand or the crRNA, and 
thus mutating these residues might improve AsCas12a 
performance. All of these hypotheses need to be tested 
in the future.

Conclusions
In summary, we created novel AsCas12a and LbCas12a 
variants with both high-activity and high-fidelity, 
expanding the Cas12a toolbox, and thus, these variants 
could enhance the performance of Cas12a in a wide spec-
trum of applications.

Methods
Plasmid construction
AsCas12a and LbCas12a variants expression plasmids 
bearing amino acid substitutions were generated by 
standard PCR and molecular cloning into a plasmid con-
tained a CAG promoter, HA, P2A-mcherry cassette via 
Gibson Assembly. sgRNA expression plasmids were con-
structed by ligating oligonucleotide duplexes into EcoR 
V and Hind III cut pBlueScript backbone with a human 
U6 promoter and an As- or Lb-crRNA sequence. All the 
plasmids were confirmed by Sanger sequencing, and all 
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the sgRNAs used in this study are shown in Additional 
file 1: Table S3.

Cell culture and cell transfection
HEK293T, B16, and A375 cells were maintained in Dul-
becco’s modified Eagle’s medium (DMEM, Life Tech-
nologies) at 37°C in a 5% CO2 humidified incubator. All 
growth media were supplemented with 2 mM L-glu-
tamine (Life Technologies), 100 U/mL penicillin, 100 
μg/mL streptomycin (Life Technologies), and 10% fetal 
bovine serum. All the cell lines in this study were cul-
tured no more than 10 passages.

Cells were transfected with PEI reagent (Polysciences, 
Inc., PA, USA) according to the manufacturer’s instruc-
tions. Briefly, 250 ng of pCAG-Cas12a-mcherry and 250 
ng of sgRNA-encoding plasmids were transfected per 
well in a 24-well plate. Cells were harvested 2–3 days 
after transfection, then the genomic DNA or the total 
RNA were extracted for the following assays.

Tag‑seq method
Tag-seq experiments were performed and analyzed as 
previously described [65]. Briefly, HEK293T cells were 
transfected by PEI with 20 nM Tag, 1000 ng of Cas 
nuclease, and 1000 ng single sgRNA or a pool sgRNAs 
(30–50 ng/sgRNA) per well in a six-well plate. A375 
cells were transfected by Amaxa Cell Line Nucleofec-
tor Kit V (VCA-1003, LONZA, Switzerland) following 
the manufacturer’s instructions (2D) with 20 nM Tag, 
1200 ng of Cas nuclease, and 800 ng WT/Mut-BRAF-
sgRNA. All cells were harvested 3 days after transfection 
and genomic DNA was extracted for one-step libraries 
preparation by the Fragmentation, End Preparation, and 
dA-Tailing Module and Adapter Ligation Module kit 
(Vazyme Biotech Co., Ltd., Nanjing, China). The R and L 
libraries were constructed by PCR with library prepara-
tion primers, which were followed by sequencing (Hiseq/
NovaSeq platform, Novogene, Beijing, China) and anal-
ysis with a Tag-seq bioinformatics pipeline. Tag-seq 
experiments were performed with the same input gDNA 
and an equal sequencing depth. The analysis pipeline is 
available at https://​github.​com/​zhouj​j2013/​Tag-​seq and 
https://​doi.​org/​10.​5281/​zenodo.​46794​60.

Activity and specificity scoring
For the comparisons of performance among Cas12a vari-
ants, Tag-seq reads were used for calculating the editing 
activity and targeting specificity. Activity scores were 
calculated as the mean ratio of the on target reads across 
all the tested sites, normalized to the WT Cas12a nucle-
ase. Specificity scores were calculated as the ratio of the 
on target reads to the on-target reads plus the off-target 
reads across all the tested sites.

Tag‑PCR assay
Tag-PCR was used to roughly determine the editing 
events of the CRISPR-Cas systems, which reflected the 
insertion efficiency of the Tag at the editing sites [65]. 
Briefly, cell transfection was the same as the Tag-seq 
method. After extraction of genomic DNA with inte-
grated Tag sequence at break sites, PCR was performed 
by using the Tag-specific primer and a locus-specific R 
primer, then PCR products were assessed by running on 
an agarose gel.

Deep‑seq analysis
Deep-seq was used to determine the indel frequency. 
Briefly, the primers with forward and reverse indexes 
were used to amplify the genomic regions in the first-
round PCR. Then, equal amounts of the first PCR prod-
ucts were mixed and subjected to a second round of PCR 
with the P5- and P7-containing primers to generate the 
sequencing libraries. Paired-end sequencing was per-
formed using the Hiseq/NovaSeq system (Novogene, 
Beijing, China). Indel frequency was calculated as the 
ratio of (read counts with indel sequence)/(total sequenc-
ing read counts). The deep-seq primers and the samples’ 
index information were listed in Additional file 1: Tables 
S4 and S5.

T7EI and polyacrylamide gel electrophoresis (PAGE) assay
For T7EI analysis, the amplicons were purified, denatured 
at 95°C for 5 min and annealed in NEB Buffer 2 with a 
slow ramp down (approximately −2°C/min) to 4°C, then 
subjected to T7 endonuclease I (NEB, UK) digestion for 
3 h at 37°C before loading on a 2% agarose gel. For PAGE 
assay, genomic DNA was isolated using sarkosyl lysis 
buffer (10 mM Tris pH7.6, 0.5% Sarkosyl, 10 mM NaCl, 
10 mM EDTA, 0.1 mg/ml proteinase K) and the target 
sites were amplified by PCR. The purified amplicons were 
reannealed to form heteroduplexes and then subjected to 
5% polyacrylamide gel electrophoresis. All T7EI and the 
PAGE primers in this study are listed in Additional file 1: 
Table S4.

Quantitative real‑time PCR
Total RNA from the transfected cells was isolated using 
Trizol Reagent (Thermo Fisher, USA) following the man-
ufacturer’s instructions. Total RNA (1 μg) was reverse 
transcribed into cDNA and then quantitative real-time 
PCR (SYBR Premix Ex Taq II, TAKARA, China) was 
performed using a LightCycler 96 System (Roche, Swit-
zerland). Relative gene expression was calculated using 
the 2−ΔΔCt method after normalizing to GAPDH expres-
sion. All the qPCR primers are listed in Additional file 1: 
Table S4.

https://github.com/zhoujj2013/Tag-seq
https://doi.org/10.5281/zenodo.4679460
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Western blotting
To detect the expression of the AsCas12a and LbCas12a 
variants, the transfected cells were lysed in a 2×SDS load-
ing buffer and boiled for 10 min. Lysates were resolved 
through SDS/PAGE and transferred onto a nitrocellulose 
membrane which was blocked using 5% non-fat milk and 
sequentially incubated with primary antibodies (anti-HA, 
sigma, USA, anti-GADPH, Proteintech, China) and an 
HRP-conjugated horse anti-mouse IgG secondary anti-
body (CST, USA, CAT# 7076S). All the probed proteins 
were finally detected through chemiluminescence follow-
ing the manufacturer’s instructions (Pierce, USA).

RNA‑seq
RNA-seq experiments were performed and analyzed 
as previously described [78]. Briefly, total RNA was 
extracted by Trizol reagent (Invitrogen, Carlsbad, CA, 
USA), then mRNA was used for the standard RNA 
libraries’ preparation, and libraries were sequenced by 
150 bp paired-end Novaseq device. For data analysis, 
Hisat2 v2.0.52 was used to build the index of the refer-
ence genome and align the paired-end clean reads with 
the reference genome. Then, StringTie v2.23 was used to 
count the read numbers mapped to each gene. Fragments 
per kilobase per million (FPKM) of each gene was calcu-
lated based on the length of the gene and the reads count 
mapped to this gene. Differential expression was defined 
by a Benjamini-Hochberg adjusted p-value (q value | 
FDR) of <0.05 and a fold change of >2 or <0.5. All figures 
were plotted using R package ggplot2.

FACS analysis
All flow cytometry analyses were performed using FlowJo 
software (TreeStar, USA). Cells were harvested 48 h post-
transfection, and the cleavage efficiency of AsCas12a var-
iants was determined as the proportion of GFP negative 
cells within the AsCas12a-transfected cells (mCherry-
positive). To detect the apoptosis of A375, cells were first 
transduced with the lentivirus encoding the AsCas12a-
WT, AsCas12a-RKA, and AsCas12a-HF protein, then 
cells were co-transfected with the mut-BRAF or EGFP 
(as a negative control) sgRNA and a pCMV-mCherry 
reporter plasmid. After 7 days, cells were gated out 
using mCherry, followed by the standard procedures of 
the Annexin V-FITC Apoptosis Detection Kit (BestBio, 
China) according to the manufacturer’s instructions.

Statistics analysis and reproducibility
Student’s t-test and one-way ANOVA were used in this 
study for the statistical analysis. The reproducibility was 
shown by performing two-four independent biological 
replicate experiments.
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